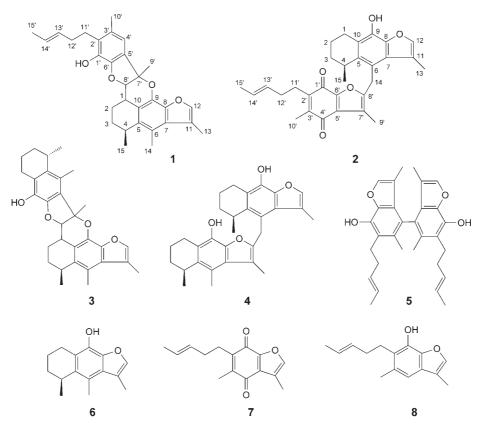
## Sesquiterpenoids from the Rhizome of Ligularia virgaurea

by Xiao-Bai Sun, Yang-Jun Xu, Dong-Feng Qiu, and Cheng-Shan Yuan\*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China (phone: +86-0931-891-4178; fax: +86-0931-891-2582; e-mail: yuancs@lzu.edu.cn)

Two novel sesquiterpene dimers, compounds 1 and 2, were isolated from the rhizome of *Ligularia* virgaurea, together with the six known sesquiterpenoids 3-8. Their structures were established by physico-chemical and spectroscopic methods, especially by means of 1D- and 2D-NMR as well as HR-MS analyses. A mechanism based on a classical *Diels* – *Alder* cyclization is proposed for the formation of the dimer 1 from the precursors 8 and the quinone form of 6 (*Scheme*).


**Introduction**. – The genus *Ligularia* is an important source of sesquiterpenoids. A number of sesquiterpenoids, including a few unusual ones from *Ligularia* plants, have been reported in recent years [1]. During our search for new natural products, we investigated *Ligularia virgaurea*, a traditional herb used in folk medicine for the treatment of coughs and inflammation [2]. As a result, five dimeric sesquiterpenes, including the new compounds **1** and **2**, were isolated from the Et<sub>2</sub>O/petroleum ether extract of this species. In this study, we describe the isolation and structural elucidation of the new compounds. In addition, we report the re-assigned, consistent <sup>13</sup>C-NMR data of the known isolates **3**–**8** [3–6].

**Results and Discussion.** – Compound **1** was isolated as a colorless powder. The quasi-molecular  $[M + Na]^+$  ion peak at m/z 481.2350 (calc. 481.2349) in the HR-ESI mass spectrum indicated the molecular formula  $C_{30}H_{34}O_4$ , with 14 degrees of unsaturation. The IR spectrum of **1** exhibited strong absorption bands at 3395 (OH), 1698 (C=C), 1474 and 1449 (aromatic ring), and 1104 and 1087 cm<sup>-1</sup> (C-O). Detailed analysis of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **1** (*Table 1*) enabled us to elucidate its structure as (5S)-5,6,7,7a,7b,12b-hexahydro-3,4,5,11,12b-pentamethyl-10-[(3E)-pent-3-en-1-yl]-furo[3'',2'':6',7']naphtho[1',8':4,5,6]pyrano[3,2-b]benzofuran-9-ol<sup>1</sup>).

The <sup>13</sup>C-NMR (DEPT) spectroscopic data of **1** (*Table 1*) indicated 30 C-atoms, including six Me, four CH<sub>2</sub>, and seven CH groups, as well as 13 quaternary C-atoms, which suggested a sesquiterpene dimer. The <sup>1</sup>H-NMR spectrum showed the presence of a pent-3-enyl group ( $\delta$ (H) 1.56 (d, J = 4.4 Hz, Me(15')); 5.39–5.42 (m, H–C(13'), H–C(14')); 2.04–2.07 (m, H–C(12')); 2.55–2.63 (m, CH<sub>2</sub>(11'))), an aromatic Me group ( $\delta$ (H) 2.17 (s, Me(10'))), and an aromatic H-atom ( $\delta$ (H) 6.75 (s, H–C(4'))). All

Systematic name. However, in the chemical formulae, arbitrary atom numbering is used throughout, based on the benzofuran sesquiterpene backbone, to facilitate data comparison.

<sup>© 2007</sup> Verlag Helvetica Chimica Acta AG, Zürich



these signals indicated that 1 had some structural characteristics similar to the known compound 8 [5].

The remaining <sup>1</sup>H-NMR signals of **1** indicated another structural fragment related to compound **6** [3]. These signals included a Me *doublet* ( $\delta$ (H) 1.16 (*d*, *J* = 6.4 Hz, Me(15))), a Me group on a furan ring ( $\delta$ (H) 2.26 (*s*, Me(13))), an aromatic Me group ( $\delta$ (H) 2.44 (*s*, Me(14))), and a furan H-atom ( $\delta$ (H) 7.27 (*s*, H–C(12))). The presence of the above-mentioned two fragments was further corroborated by HMBC experiments (*Fig. 1, Table 1*).

Upon comparison of the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **1** with those of the known compounds **6** [3] and **8** [5], **1** was predicted to be a 'dimer' arising from them. The signals due to the C=C bond between H–C(8) ( $\delta$ (H) 7.35;  $\delta$ (C) 140.63) and C(7) ( $\delta$ (C) 116.11) in **8** were changed into an oxymethine ( $\delta$ (H) 5.05;  $\delta$ (C) 95.31) and a quaternary C-atom ( $\delta$ (C) 86.50), respectively, in **1**. In addition, the CH<sub>2</sub> group ( $\delta$ (H) 3.00, 2.66;  $\delta$ (C) 23.21) in **6** was replaced by a CH ( $\delta$ (H) 3.11;  $\delta$ (C) 30.42) in **1**. These observations suggested that **1** was a dimer of **8** and the quinone form of **6**, arising from a classical *Diels–Alder* reaction, as shown in the *Scheme*. This conclusion was supported by an HMBC correlation between H–C(8') and C(10) (*Table 1*).

The configuration at C(4) in **1** was presumed to be (S), by analogy with the known configuration of **6** [6]; and the ring junction between C(7') and C(8') was *cis*, as

1706

| Position <sup>1</sup> ) | $\delta(\mathrm{H})$       | $\delta(C)$ (DEPT) | HMBC                        |
|-------------------------|----------------------------|--------------------|-----------------------------|
| 1                       | 3.11 (d, J = 8.8)          | 30.42 ( <i>d</i> ) | C(5), C(9), C(10)           |
| 2                       | 1.72 (br. $d, J = 10.0$ ), | 20.64(t)           | C(1), C(4), C(10)           |
|                         | 2.49 - 2.53 (m)            |                    |                             |
| 3                       | 2.03 - 2.05(m)             | 28.34(t)           | C(2)                        |
| 4                       | 3.17 (br. s)               | 29.01(d)           |                             |
| 5                       |                            | 135.79(s)          |                             |
| 6                       |                            | 121.16(s)          |                             |
| 7                       |                            | 126.94(s)          |                             |
| 8                       |                            | 143.51 (s)         |                             |
| 9                       |                            | 138.29 (s)         |                             |
| 10                      |                            | 118.98 (s)         |                             |
| 11                      |                            | 116.78 (s)         |                             |
| 12                      | 7.27(s)                    | 141.46(d)          | C(7), C(8)                  |
| 13                      | 2.26(s)                    | 10.52(q)           | C(7), C(11), C(12)          |
| 14                      | 2.44(s)                    | 13.17(q)           | C(5), C(6), C(7)            |
| 15                      | 1.16(d, J = 6.4)           | 19.30(q)           | C(3), C(4), C(5)            |
| 1′                      |                            | 138.42(s)          |                             |
| 2′                      |                            | 125.79(s)          |                             |
| 3′                      |                            | 129.06 (s)         |                             |
| 4′                      | 6.75 (s)                   | 115.68(d)          | C(3'), C(6'), C(7'), C(10') |
| 5'                      |                            | 127.73(s)          |                             |
| 6′                      |                            | 146.27(s)          |                             |
| 7′                      |                            | 86.50 (s)          |                             |
| 8′                      | 5.05(s)                    | 95.31(d)           | C(9'), C(10)                |
| 9′                      | 1.86(s)                    | 25.34(q)           | C(5'), C(7'), C(8')         |
| 10′                     | 2.17(s)                    | 18.86(q)           | C(3'), C(4')                |
| 11′                     | 2.55 - 2.63 (m)            | 26.89(t)           | C(1'), C(3'), C(12')        |
| 12'                     | 2.04 - 2.07(m)             | 31.87(t)           | C(11'), C(13'), C(14')      |
| 13′                     | 5.39 - 5.42(m)             | 131.46(d)          | C(12'), C(15')              |
| 14′                     | 5.39 - 5.42(m)             | 124.59(d)          | C(12'), C(15')              |
| 15′                     | 1.56 (d, J = 4.4)          | 17.28(q)           | C(13'), C(14')              |

Table 1. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR* as well as *HMBC* Data for **1**. At 400/100 MHz, resp., in ( $D_6$ ) acetone;  $\delta$  in ppm, *J* in Hz.

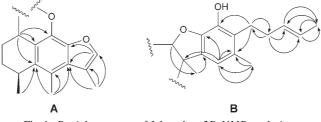
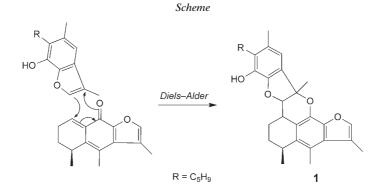




Fig. 1. Partial structures of 1 based on 2D-NMR analysis

determined on the basis of an NOE difference spectrum, in which the signal for Me(9') was enhanced by 2.17% upon irradiation of H-C(8'). In addition, the C=C bond between C(13') and C(14') was deduced to be (*E*)-configured, as judged from the



<sup>13</sup>C-NMR chemical shift of C(15') ( $\delta$ (C) 17.28) and from an absorption band at 967 cm<sup>-1</sup> in the fingerprint region of the IR spectrum of **1**.

Compound **2** was obtained as a colorless gum, showing a green spot on TLC when sprayed with 5% H<sub>2</sub>SO<sub>4</sub> in EtOH, followed by heating on a hot plate. Its IR spectrum showed absorption bands at 3417 (OH), 1708 (C=O), 1656 and 966 ((*E*)-configured C=C), and 1628, 1583, 1544, and 1441 cm<sup>-1</sup> (aromatic rings). The HR-ESI mass spectrum of **2** showed the quasi-molecular  $[M + NH_4]^+$  ion peak at 490.2586 (calc. 490.2588), suggesting the molecular formula C<sub>30</sub>H<sub>32</sub>O<sub>5</sub>, with 15 degrees of unsaturation. Analysis of the <sup>1</sup>H- and <sup>13</sup>C-NMR data (*Table 2*) established the structure of **2** as 2-{[(5*S*)-5,6,7,8-tetrahydro-9-hydroxy-3,5-dimethylnaphtho[2,3-*b*]furan-4-yl]methyl}-3,5-dimethyl-6-[(3*E*)-pent-3-en-1-yl]-1-benzofuran-4,7-dione<sup>1</sup>).

The EI mass spectrum of **2** exhibited the molecular-ion peak at m/z 472, and two fragments at m/z 229 (C<sub>15</sub>H<sub>17</sub>O<sub>2</sub><sup>+</sup>) and 243 (C<sub>15</sub>H<sub>15</sub>O<sub>3</sub><sup>+</sup>), suggesting a dimeric sesquiterpene. This was further confirmed by <sup>13</sup>C-NMR (DEPT) analysis (*Table 2*), which indicated the presence of 30 C-atoms, including five Me, six CH<sub>2</sub>, and four CH groups, as well as 15 quaternary C-atoms. The <sup>1</sup>H-NMR spectrum of **2** showed two Me *doublets* ( $\delta$ (H) 1.18 (d, J = 7.2 Hz, Me(15)); 1.59 (d, J = 4.4 Hz, Me(15'))), two Me groups on furan rings ( $\delta$ (H) 2.02 (s, Me(9')); 2.27 (s, Me(13))), an aromatic Me group ( $\delta$ (H) 2.02 (s, Me(10'))), a furan H-atom ( $\delta$ (H) 7.46 (s, H–C(12))), two olefinic H-atoms ( $\delta$ (H) 5.42–5.46 (m, H–C(13'), H–C(14'))), and a CH<sub>2</sub> group ( $\delta$ (H) 4.50, 4.40 (2d, J = 17.2 Hz each, CH<sub>2</sub>(14))) between two aromatic rings.

By comparison of the above signals with those of the known compounds **6** [3] and **7** [4], compound **2** was considered to be a 'dimer' arising from them. In the NMR spectra, H-C(8) ( $\delta(H)$  7.39;  $\delta(C)$  144.62) of **7** was replaced by a quaternary C-atom ( $\delta(C)$  158.00) in **2**, and the Me group on the aromatic ring ( $\delta(H)$  2.55;  $\delta(C)$  14.07) of **6** was changed into a CH<sub>2</sub> group ( $\delta(H)$  4.40, 4.50;  $\delta(C)$  26.12) in **2**, which supported the above assumption.

Extensive analysis of the HMBC data of 2 (*Table 2, Fig. 2*) led to the substructures **A** and **B**. Substructure **A** (similar as in **6**) was assembled on the basis of the HMBC correlations between H-C(13) and C(7), C(11) and C(12); between H-C(14) and C(5), C(6), and C(7); between H-C(1) and C(5), C(9), and C(10); and between H-C(15) and C(3), C(4), and C(5). Substructure **B** (resembling **7**) was assembled on

| Position <sup>1</sup> ) | $\delta(\mathrm{H})$     | $\delta(C)$ (DEPT) | HMBC                                 |
|-------------------------|--------------------------|--------------------|--------------------------------------|
| 1                       | 2.60-2.69(m),            | 23.44 ( <i>t</i> ) | C(2), C(3), C(5), C(9), C(10)        |
|                         | 2.99 (dd, J = 17.6, 6.4) |                    |                                      |
| 2                       | 1.87 - 1.99 (m)          | 17.12 ( <i>t</i> ) | C(4), C(10)                          |
| 3                       | 1.70 - 1.79 (m)          | 30.45 (t)          | C(1), C(2), C(5)                     |
| 4                       | 3.23 (br. s)             | 29.26(d)           | C(2), C(3), C(5), C(6), C(10), C(15) |
| 5                       |                          | 137.48 (s)         |                                      |
| 6                       |                          | 116.97 (s)         |                                      |
| 7                       |                          | 127.97 (s)         |                                      |
| 8                       |                          | 144.05(s)          |                                      |
| 9                       |                          | 139.63 (s)         |                                      |
| 10                      |                          | 120.25(s)          |                                      |
| 11                      |                          | 117.23 (s)         |                                      |
| 12                      | 7.46(s)                  | 142.55(d)          | C(7), C(8), C(11)                    |
| 13                      | 2.27(s)                  | 10.61(q)           | C(7), C(11), C(12)                   |
| 14                      | 4.50 (d, J = 17.2),      | 26.12(t)           | C(5), C(6), C(7), C(7'), C(8')       |
|                         | 4.40 (d, J = 17.2)       |                    |                                      |
| 15                      | 1.18 (d, J = 7.2)        | 20.20(q)           | C(3), C(4), C(5)                     |
| 1′                      |                          | 175.33 (s)         |                                      |
| 2′                      |                          | 143.57 (s)         |                                      |
| 3'                      |                          | 141.31 (s)         |                                      |
| 4′                      |                          | 185.35 (s)         |                                      |
| 5'                      |                          | 128.37 (s)         |                                      |
| 6′                      |                          | 150.17 (s)         |                                      |
| 7′                      |                          | 115.97 (s)         |                                      |
| 8′                      |                          | 158.00 (s)         |                                      |
| 9′                      | 2.02(s)                  | 8.40(q)            | C(5'), C(7'), C(8')                  |
| 10′                     | 2.02(s)                  | 12.06(q)           | C(2'), C(3'), C(4')                  |
| 11′                     | 2.54(t, J = 8.0)         | 26.89(t)           | C(1'), C(2'), C(3'), C(12'), C(13')  |
| 12′                     | 2.03 - 2.08 (m)          | 32.18 ( <i>t</i> ) | C(11'), C(13'), C(14')               |
| 13′                     | 5.42 - 5.46(m)           | 130.98(d)          | C(12'), C(15')                       |
| 14′                     | 5.42 - 5.46(m)           | 126.35 (d)         | C(12'), C(15')                       |
| 15′                     | 1.59(d, J = 4.4)         | 17.89(q)           | C(13'), C(14')                       |

Table 2. <sup>1</sup>*H*- and <sup>13</sup>*C*-*NMR* as well as *HMBC* Data for **2**. At 400/100 MHz, resp., in (D<sub>6</sub>)acetone;  $\delta$  in ppm, *J* in Hz.

the basis of the HMBC correlations between H-C(11') and C(1'), C(2'), and C(3'); between H-C(10') and C(2'), C(3'), and C(4'); and between H-C(9') and C(5'), C(7'), and C(8'). The two moieties **A** and **B** were then connected to **2** based on the key correlations between H-C(14) and both C(7') and C(8'). Finally, the absolute configuration at C(4) was presumed to be (*S*), in analogy with the known configuration of **6**.

The five known compounds were identified as adenositin B (3) [3], adenositin A (4) [3], virgaurin A (5) [4], cacalol (6) [3], 3,5-dimethyl-6-[(3E)-pent-3-en-1-yl]-1benzofuran-4,7-dione (7) [5], and 3,5-dimethyl-6-[(3E)-pent-3-en-1-yl]-1-benzofuran-7-ol (8) [5], one the basis of physico-chemical and spectroscopic methods. Since there were some inconsistencies in the literature data, the <sup>13</sup>C-NMR spectroscopic data of 3– 8 (*Table 3*) were unambiguously re-assigned on the basis of HMBC spectra.

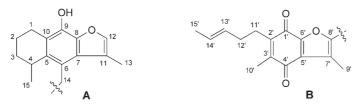



Fig. 2. Partial structures of 2 based on 2D-NMR analysis

Table 3. Newly Assigned <sup>13</sup>C-NMR Data of the Known Compounds 3-8. At 100 MHz in (D<sub>6</sub>)acetone (3-5) or CDCl<sub>3</sub> (6-8). Assignments were confirmed by HMBC analyses.

| Position <sup>a</sup> ) | 3               | 4               | 5      | 6      | 7      | 8      |
|-------------------------|-----------------|-----------------|--------|--------|--------|--------|
| 1 (1')                  | 30.46 (22.85)   | 22.87 (23.40)   | 138.86 | 23.21  | 175.61 | 138.42 |
| 2 (2')                  | 19.02 (16.29)   | 16.58 (16.98)   | 123.44 | 16.91  | 143.20 | 122.73 |
| 3 (3')                  | 28.76 (29.65)   | 29.85 (30.37)   | 130.22 | 30.34  | 141.31 | 131.73 |
| 4 (4')                  | 28.81 (28.47)   | 28.77 (28.99)   | 123.44 | 29.20  | 184.49 | 111.76 |
| 5 (5')                  | 134.69 (133.90) | 136.72 (136.90) | 126.92 | 135.81 | 126.54 | 127.56 |
| 6 (6')                  | 124.20 (124.46) | 118.29 (118.61) | 142.92 | 119.02 | 151.35 | 142.44 |
| 7 (7')                  | 127.07 (125.01) | 127.45 (127.80) | 117.03 | 126.37 | 120.84 | 116.11 |
| 8 (8')                  | 144.71 (144.71) | 141.39 (143.24) | 141.25 | 142.38 | 144.62 | 140.63 |
| 9 (9')                  | 135.52 (135.52) | 138.54 (135.07) | 7.90   | 136.54 | 8.55   | 7.89   |
| 10 (10')                | 119.11 (121.57) | 119.37 (119.37) | 15.42  | 120.45 | 12.13  | 19.94  |
| 11 (11′)                | 116.29 (88.19)  | 116.96 (110.76) | 26.92  | 117.39 | 26.45  | 26.57  |
| 12 (12')                | 141.13 (96.41)  | 141.62 (151.50) | 32.97  | 141.07 | 31.60  | 32.41  |
| 13 (13')                | 11.26 (26.43)   | 10.20 (10.77)   | 131.51 | 11.58  | 129.73 | 131.12 |
| 14 (14')                | 13.66 (12.50)   | 25.38 (13.35)   | 124.72 | 14.07  | 126.17 | 125.31 |
| 15 (15')                | 20.86 (19.50)   | 21.20 (21.52)   | 17.47  | 21.63  | 17.81  | 17.89  |

This work was supported by the National Natural Science Foundation of China (20621091 QT Program).

## **Experimental Part**

General. Column chromatography (CC): Sephadex LH-20 (Pharmacia) or silica gel (200–300 mesh; Qingdao Marine Chemical Factory). Thin-layer chromatography (TLC): silica gel  $GF_{254}$  (10–40 µm; Qingdao Marine Chemical Factory); detection at 254 nm or by heating after spraying with 5% H<sub>2</sub>SO<sub>4</sub> in EtOH. UV Spectra: Shimadzu UV-260 spectrometer;  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. Optical rotations: Perkin-Elmer-341 polarimeter. IR Spectra: Nicolet NEXUS-670 FT-IR spectrometer; in cm<sup>-1</sup>. NMR Spectra: Varian Mercury-400BB spectrometer;  $\delta$  in ppm rel. to Me<sub>4</sub>Si, J in Hz. EI-MS: HP-5988A GC/MS instrument; in m/z (rel. %). HR-ESI-MS: Bruker APEX-II mass spectrometer.

*Plant Material.* The rhizomes of *Ligularia virgaurea* were collected in Lintao County, Gansu Province, P. R. China, in August 2005. The plant was identified by Prof. *Guo-Liang Zhang*, Department of Life Science, Lanzhou University. A voucher specimen (No. 200508LV) was deposited at the Institute of Organic Chemistry, Lanzhou University, P. R. China.

*Extraction and Isolation.* The dried, milled rhizomes of *L. virgaurea* (2.0 kg) were extracted with petroleum ether (PE)/Et<sub>2</sub>O 2 : 1 ( $3 \times 4$  l for 7 d each) at r.t. The extract was concentrated to afford a solid

residue (65.0 g), which was purified by CC (SiO<sub>2</sub>; PE/acetone  $30:1 \rightarrow 0:1$ ) to afford six crude fractions (*Fr.* A - F). *Fr. A* was subjected to CC (SiO<sub>2</sub>; PE/AcOEt  $100:1 \rightarrow 20:1$ ) to give six subfractions (*Fr.* A.1 - A.6). *Fr. A.2* was re-subjected to CC (SiO<sub>2</sub>; PE/acetone  $80:1 \rightarrow 0:1$ ), which gave **8** (66 mg) after recrystallization from acetone. *Fr. A.3* was submitted to prep. TLC (SiO<sub>2</sub>; PE/AcOEt 10:1) to yield **7** (26 mg). *Fr. B* was purified by CC (SiO<sub>2</sub>; PE/acetone  $80:1 \rightarrow 0:1$ ) to afford five subfractions (*Fr. B.1* – *B.5*). *Fr. B.1* was further separated by CC (SiO<sub>2</sub>; PE/acetone  $50:1 \rightarrow 0:1$ ) to afford **6** (98 mg) *Fr. B.2* was subjected to CC (*Sephadex LH-20*; CHCl<sub>3</sub>/MeOH 2:1), followed by prep. TLC (SiO<sub>2</sub>; PE/CHCl<sub>3</sub> 1:1) to provide **1** (3 mg) and **3** (8 mg). *Fr. D.3* was subjected to Prep. TLC (SiO<sub>2</sub>; PE/CHCl<sub>3</sub>/AcOEt 60:20:1) to yield **5** (32 mg). *Fr. D.4* was purified by CC (SiO<sub>2</sub>; PE/acetone 5:1) to yield **4** (15 mg).

(5S)-5,6,7,7a,7b,12b-Hexahydro-3,4,5,11,12b-pentamethyl-10-[(3E)-pent-3-en-1-yl]-furo[3",2":6',7']naphtho[1',8':4,5,6]pyrano[3,2-b]benzofuran-9-ol (1). Colorless powder. UV (MeOH): 223.6 (3.9), 255.0 (3.4), 264.4 (3.4). [a]<sub>20</sub><sup>D</sup> = -48 (c = 0.15, MeOH). IR (KBr): 3395, 2923, 1698, 1474, 1449, 1343, 1328, 1248, 1229, 1104, 1087, 967. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Table 1*. HR-ESI-MS: 481.2350 ([M+Na]<sup>+</sup>, C<sub>30</sub>H<sub>34</sub>NaO<sub>4</sub><sup>+</sup>; calc. 481.2349).

 $\begin{array}{l} 2\-\/[(5S)-5,6,7,8-Tetrahydro-9-hydroxy-3,5-dimethylnaphtho[2,3-b]furan-4-yl]methyl]-3,5-dimethyl-6-f(3E)-pent-3-en-1-yl]-1-benzofuran-4,7-dione (2). Colorless gum. UV (MeOH): 222.0 (4.6), 258.0 (4.3). [a]_D^0 = 0 (c = 0.2, MeOH). IR (KBr): 3417, 2930, 1708, 1656, 1628, 1583, 1544, 1441, 966. {}^{1}\text{H-} and {}^{1}\text{C-NMR}: see Table 2. EI-MS: 472 (32, <math>M^+$ ), 243 (5,  $C_{15}H_{15}O_3^+$ ), 229 (5,  $C_{15}H_{17}O_2^+$ ), 55 (100,  $C_4H_7^+$ ). HR-ESI-MS: 490.2586 ( $[M + NH_4]^+$ ,  $C_{30}H_{36}NO_5^+$ ; calc. 490.2588).

## REFERENCES

- Q.-X. Wu, Y.-P. Shi, L. Yang, Org. Lett. 2004, 6, 2313; Q.-H. Wu, S.-G. Chen, K. Gao, Tetrahedron Lett. 2004, 45, 8855; Q.-X. Wu, A.-M. Yang, Y.-P. Shi, Tetrahedron 2005, 61, 10529.
- [2] Jiansu College of New Medicine, 'A Dictionary of Traditional Chinese Medicines', Shanghai People's Publishing House, Shanghai, 1997, p. 2349.
- [3] M. Kuroyanagi, H. Naito, T. Noko, A. Ueno, S. Fukushima, Chem. Pharm. Bull. 1985, 33, 4792.
- [4] H.-M. Chen, B.-G. Wang, Z.-J. Jia, Indian J. Chem., Sect. B 1996, 35, 1304.
- [5] Z.-J. Jia, H.-M. Chen, Phytochemistry 1991, 30, 3132.
- [6] F. Yuste, E. Diaz, F. Walls, K. Jankowski, J. Org. Chem 1976, 41, 4103; K. Omura, M. Nakanishi, K. Takai, K. Naya, Chem. Lett. 1978, 1257.

Received May 8, 2007